Duality in mathematical fractional programming optimality under convexity

Cite as: AIP Conference Proceedings **2597**, 060006 (2022); https://doi.org/10.1063/5.0117067 Published Online: 29 December 2022

Ashish Prakash, Richa Agarwal and Rakhi Trivedi

APL Quantum

CALL FOR APPLICANTS Seeking Editor-in-Chief

AIP Conference Proceedings **2597**, 060006 (2022); https://doi.org/10.1063/5.0117067 © 2022 Author(s). 2597, 060006

Duality in Mathematical Fractional Programming Optimality under Convexity

Ashish Prakash^{1, a)}, Richa Agarwal^{2, b)} and Rakhi Trivedi^{3,c)}

¹ABES Engineering College, Campus-1, NH-24, Ghaziabad, UP, India ² KIET Group of Institutions, Ghaziabad, UP, India ³ IILM College of Engineering and Technology, Greater Noida, UP, India

^{a)}Corresponding author:apgarg@abes.ac.in
^{b)} richaagarwal796@gmail.com
^{c)} trivedirakhi80@gmail.com

Abstract In this paper, weir-type dual with idea of effectiveness is used to utter duality theorems, under generalized (F, ρ) convexity assumption for multi objective fractional programming problem. This work is an extension of the outcome of Mustafa in the environment of multi-objective fractional programming using generalized (F, ρ) convexity assumption.

INTRODUCTION

Egudo derived specialtheorems of duality for multi objective fractional programming [4] (MFP) problem, using the concept of effectiveness tied with universal ρ -convexity [10]. After that Mukherjee gave the extension of the outcomes of Egudo in the perspective of multi objective fractional [13] programming, using parametric approach. For multi-objective nonlinear programming [2] problem, inequality and equality constraints are involved in this, Preda used the idea of effectiveness to state the results of duality under universal (F, ρ)-convexity. Yong extended and unified the results of Mukherjee. He established specialtheorems of duality for multi objective fractional programming problem [1], via the method of effectiveness fixed with special universal convex assumption.

Consider the following fractional programming issue with many objectives:

(MFP) $\operatorname{Minimize}\left(\frac{f_1(x)}{g_1(x)}, \frac{f_2(x)}{g_2(x)}, \dots, \frac{f_p(x)}{g_p(x)}\right)$ Subject to $h(x) \leq 0$ ------(1) Where the functions which satisfy differentiability [11] and $g_i > 0$ are given by $f_i: \mathbb{R}^n \to \mathbb{R}, g_i: \mathbb{R}^n \to \mathbb{R}$ for $i = 1, 2, 3, \dots, p$ and $h: \mathbb{R}^n \to \mathbb{R}^m$

I. The following definition will be used in establishing results of this paper

DEFINITION 2.1:

x⁰ is a feasible solution for (MFP) which is suitable result for (MFP) if for (MFP)feasible solution does not exist like x* such that $\frac{f_i(x^*)}{g_i(x^*)} < \frac{f_i(x^0)}{g_i(x^0)}$ for some i = 1,2,3,...,pAnd $\frac{f_j(x^*)}{g_j(x^*)} \le \frac{f_j(x^0)}{g_j(x^0)}$ for all j = 1,2,3,...,p

Consider Weir type dual as follows for (MFP):

Proceeding of International Conference on Frontiers of Science and Technology 2021 AIP Conf. Proc. 2597, 060006-1–060006-5; https://doi.org/10.1063/5.0117067 Published by AIP Publishing. 978-0-7354-4299-3/\$30.00 (MFD) Maximize $\left\{ \frac{f_1(y)}{g_1(y)} \frac{f_2(y)}{g_2(y)} \dots \frac{f_p(y)}{g_p(y)} \right\}$ $y_i t_i \sigma$ $\sum_{i=1}^p \tau_i \, \nabla \frac{f_i(y)}{g_i(y)} + \nabla \sigma^t \, \Box(y) = 0$ Subject to -----(2) $\sigma^t \Box(y) \ge 0$ -----(3) n -----(4)

$$\sigma \ge 0, \tau_i \ge 0, \quad i = 1, \dots, p, \quad \sum_{i=1}^p \tau_i = 1$$

The following outcomes will be necessary in order to prove strong duality [12]. Lemma-2.1x* is an appropriate solution for (MFP) iffx* solves (MFP_k(δ^0)), for each

(MFP_k(
$$\delta^0$$
)) Minimize $\frac{f_k(X)}{g_k(X)}$
Subject to $\frac{f_j(X)}{g_j(X)} \le \delta_j^0$ for all $j \ne k$
h(x) ≤ 0 where $\delta_1^0 = \frac{f_j(X^*)}{g_j(X^*)}$

If $g_i(x) > 0$ for every j = 1, 2, 3, ..., p so (MFP_k(δ^0)) can be write as

$$(MFP_{k}(\delta^{0}))Minimize \qquad f_{k}(X)$$

Subject to
$$f_{j}(x) - \delta_{j}^{0}g_{j}(X) \stackrel{g_{k}(X)}{\leq} 0 \qquad \text{for all } j \neq k \qquad -----(5)$$
$$h(x) \leq 0$$

Lemma-2.2: If in (MFP) assume $g_i(x) > 0$ when j = 1, 2, 3, ..., p then x^* solves (MFP'_k(δ^0)) for each k =1,2,3, ..., p iff x^* is a suitable solution of (MFP).

Lemmas 1 & 2 given by Egudo are similar to Lemma 2.1 & 2.2.

II. Duality theorems [3] with Generalized [9] F-Convexity:

Under this section, weak and strong duality results between (MFP) & (MFD) are established, using generalized F-convexity assumption on the functions involved.

Theorem 3.1.(Weak duality) If x^0 is feasible for (MFP) and (y^0, τ, σ) is feasible for (MFD), f_i is nonnegative and F-convex, g_i , is positive & F-concave for every i=1..., p and σ^t is F-quasi-convex for y⁰. If also either of the given hypotheses holds,

(a) $\tau_i > 0$ for all i=1..., p. (b) $\sum_{i=1}^{p} \tau_i \frac{f_i(.)}{g_i(.)x}$ is strictly F-pseudo [7] convex at y^0 ,

then the following never hold,

$$\frac{f_j(X^0)}{g_j(X^0)} \le \frac{f_j(Y^0)}{g_j(Y^0)} \quad \text{for all } j=1,\dots,p \quad -----(6)$$

and

equations (2) and (8) imply $F\left(x^{0}, y^{0}, \sum_{i=1}^{p} \tau_{i} \nabla \frac{f_{i}(y^{0})}{g_{i}(y^{0})}\right) \ge 0$ ------(9) Suppose if the results (6) and (7) of the theorem hold in contrary. From hypothesis (a) it follows that $\tau_{i} \frac{f_{j}(x^{0})}{f_{i}(x^{0})} \ge \tau_{i} \frac{f_{j}(y^{0})}{f_{i}(x^{0})}$ for all i = 1, ..., p ------(10)

$$\tau_j \frac{f_j(x^*)}{g_j(x^0)} \ge \tau_j \frac{f_j(y^*)}{g_j(y^0)}$$
 for all j = 1,...,p -----(10)

and

$$\tau_i \frac{f_i(x^0)}{g_i(x^0)} \ge \tau_i \frac{f_i(y^0)}{g_i(y^0)}$$
 for all i = 1,...,p -----(11)

If $f_j(x^0) \ge 0$ and $g_j(x^0) > 0$ for each $j \in P = \{1, ..., p\}$, it follows that

 $T_j \frac{f_j(X^0)}{g_j(X^0)}, j = 1, \dots, p$ are F-pseudo convex at y⁰

Hence (10) and (11) imply

$$F(x^{0}, y^{0}, \sum_{i=1}^{p} \tau_{i} \nabla \frac{f_{i}(y^{0})}{g_{i}(y^{0})}) < 0$$

which contradicts (9)

Now on applying $\tau_i \ge 0$, i=1,..., p (since τ is feasible for (MFD)) in (6) and (7) we obtain

$$\sum_{i=1}^{p} \tau_{i} \frac{f_{i}(X^{0})}{g_{i}(X^{0})} \leq \sum_{i=1}^{p} \tau_{i} \frac{f_{i}(y^{0})}{g_{i}(y^{0})}$$
 -----(12)

Hypothesis (b) and (12) now imply

$$F\left(x^{0}, y^{0}, \sum_{i=1}^{p} \tau_{i} \nabla \frac{f_{i}(y^{0})}{g_{i}(y^{0})}\right) < 0$$

which again contradicts (9).

Hence weak duality [3] follows.

Theorem 3.2: (Strong duality) Suppose x^0 be a suitable result to (MFP) & suppose it also satisfy constraint qualification to (MFP_k(δ^0)) for at least one k=1,...,p. So $\exists \tau^0 \in R^p$ with $\sigma^0 \in R^m$ so that (x^0, τ^0, σ^0) is a feasible result to (MFD). If weak duality between (MFP) and (MFD) holds, then (x^0, τ^0, σ^0) is an proficient solution [6] for (MFD).

Proof: From Lemma 2.1, x^0 solves (MFP_k(δ°)) for all k \in P=(1,...,p) and efficient [5] for (MFP). Then \exists a k \in P so that x^0 satisfies constraints qualification for (MFP_k(δ^0)), by hypothesis. Now from Kuhn-Tucker necessary condition for $\tau_i \ge 0$ for all $i \neq k$ and $\sigma \ge 0$ such that

$$\nabla \left[\frac{f_k(X^0)}{g_k(X^0)} + \sum_{i \neq k} \tau_i \frac{f_i(X^0)}{g_i(X^0)} + \sigma^t \Box (X^0) \right] = 0 - \dots - (13)$$

and $\sigma^t \Box (x^0) = 0$ ------(14) If we put $\tau_k^0 = \frac{1}{1 + \sum_{i \neq k} \tau_i} > 0$ and divide all terms in (13) and (14) by, $1 + \sum_{i \neq k} \tau_i$ we find

$$\tau_k^0 = \frac{\tau_j}{1 + \sum_{i \neq k} \tau_i} \ge 0 \quad \text{and} \quad \sigma_1^0 = \frac{\sigma}{1 + \sum_{i \neq k} \tau_i} \ge 0$$

Here it is concluded that (x^0, τ^0, σ^0) is also feasible for (MFD) and weak duality between (MFP) and (MFD) holds. It shows (x^0, τ^0, σ^0) is an effective result for (MFD).

I. Duality Theorems with Generalized (F, ρ) – Convexity:

Again, weak and strong duality results [8] were established by us, but for universal (F, ρ) -convexity assumption on the functions involved in the (MFP) and (MFD).

Theorem 4.1: (Weak duality): If with each feasible x° to (MFP) and each feasible (y^{0}, τ, σ) to (MFD), f_{i} is nonnegative and (F, ρ^i)-convex g_i is positive and F-concave for each i=1,...,p and that σ^t is (F, ρ^0)-quasi-convex at y⁰. If also either of the given hypotheses holds,

(a) $\tau_i > 0$ for all $i=1,\ldots,p$.

(b)
$$\sum_{i=1}^{p} \tau_i \frac{f_i(.)}{g_i(.)}$$
 is strictly (F, $\boldsymbol{\rho}^1$) pseudo convex at y⁰
and if $\boldsymbol{\rho}^0 + \boldsymbol{\rho}^1 > 0$,

then the following cannot hold,

and

Proof: For the feasibility of x^0 and (y^0, τ, σ) in (MFP) and (MFD), we have

 $\sigma^t \square (x^0) \le \sigma^t \square (Y^0)$ Since σ^T h is (F, ρ^0) quasi convex at y^0 $\Rightarrow F(x^0, y^0, \nabla \sigma^t \Box (y^0)) \le -\rho^0 d^2 (x^0, y^0) - \dots$(17) Since $\rho^0 + \rho^1 > 0$ and from (2) and (17) we have $F\left(x^0, y^0, \sum_{i=1}^p \tau_i \nabla \frac{f_i(y^0)}{g_i(y^0)}\right) > -\rho^1 d^2(x^0, y^0).....(18)$

Now suppose the contrary, that the results (15) and (16) of the theorem hold. From hypothesis (a) it follows that

$$\tau_{j} \frac{f_{j}(x^{0})}{g_{j}(x^{0})} \leq \tau_{j} \frac{f_{j}(y^{0})}{g_{j}(y^{0})}$$
 for all j=1,...,p(19)
nd $\tau_{i} \frac{f_{i}(x^{0})}{g_{i}(x^{0})} \leq \tau_{i} \frac{f_{i}(y^{0})}{g_{i}(y^{0})}$ for some i=1,...,p(20)

aı

If $f_j(x^0) \ge 0$ and $g_j(x^0) > 0$ for all $j \in P$ it follows that $\sum_i^p \tau_j \frac{f_j(x^0)}{g_j(x^0)}$ is (F, ρ^1) -pseudo convex at y_0 .

Hence (19) and (20) imply $F\left(x^{0}, y^{0} \sum_{i=1}^{p} \tau_{i} \nabla \frac{f_{i}(y^{0})}{a_{i}(y^{0})}\right) < -\rho^{1} d^{2}(x^{0}, y^{0})$ which contradicts (18)

Now using $\tau_i \ge 0$, $i = 1, \dots, p$ (since τ is feasible to (MFD)) in (15) & (16), we find

Hypothesis (b) and (21) now imply

$$F\left(x^{0}, y^{0} \sum_{i=1}^{p} \tau_{i} \nabla \frac{f_{i}(y^{0})}{g_{i}(y^{0})}\right) < -\rho^{1} d^{2}(x^{0}, y^{0})$$

it again contradicts (18). Hence weak duality follows.

Theorem 4.2: (Strong duality) If x⁰ be an exact solution to (MFP) and suppose it also satisfy constraint qualification to (MFP_k(δ^0)) for at least one k=1,...,p. Then $\exists \tau^0 \in \mathbb{R}^p$ and $\sigma^0 \in \mathbb{R}^m$ so that (x^0, τ^0, σ^0) is a feasible solution to (MFD). If weak duality theorem between (MFD) and (MFP) holds, then (x^0, τ^0, σ^0) is exact solution for (MFD). Proof is similar to that of Theorem 3.2.

CONCLUSION

The goal of this paper is to demonstrate that for mathematical programming optimality and duality theorems involving standard duals with convexity assumptions, they can be obtained in a variety of ways: first, in modified convexity, then in complex spaces, third, in a modified dual, and finally, in the setting of non-smooth programmers.

ACKNOWLEDGMENTS

The author is highly obliged to the seniors for thoroughly reading this manuscript and providing some important references which led to a good presentation of the paper. The corresponding author is supported by ABES Engineering College (Code 032) Ghaziabad, UP, India

REFERENCES

- 1. Antezak, T "Global optimization euro opt res" 137,28 (2013).
- 2. Bazara, M.S., and Shetty, G.M. "Non-linear programming theory and alorithm", (Wiley, New York, 1989).
- 3. Bector, C.R. and Bector, M.K. "On various duality theorems in non-linear programming", Jour. Opti. Theo. AppI., 53, 3, 509-515 (1997).
- 4. Chandra, S., Craven, B.D. and Mond, B. "Vector values Lag rangian and. multi-objective fractional programming duality", Funct. Anal. and Optimization, 11 (3 and 4) 239-259 (2000).
- 5. Egudo, R.R. "Proper efficiency and multi-objective duality in non-linear programming", Jour. tntOpt/rn. Sd. 8, 155-166 (1997).
- 6. Hanson, M.A. "Second order invexity and duality in mathematical programming", Opsearch, 30, 313-320 (2003).
- Kaul, R.N. Suneja, S.K. and Lalitha, C.S. "Duality in pseudo-linear multi-objective fractional programming", Ind.Jou. Pur. App. Math., 24, 279-290 (2003).
- 8. Lan, S.N., Nath, B. and Kumar, A "Duality for some non-differentiable static multi-objective programmingproblem", Jour Math. Anal Appl. 186,1,862-867 (2004).
- 9. Mishra, S.K. "Second order generalized invexity and duality in mathematical programming", Optimization, 42, 51, 69 (2007).
- 10. Pini, R. "Invexity and generalized convexity", Optimization, 22, 513-525 (2001).
- 11. Singh, A.K "Some results on optimality and duality for mathematical programming involving semidifferentiable functions", Ph.D. thesis, B.H.U. Varanasi (2015).
- 12. Weir, T. "Proper efficiency and duality for vector valued optimization problem", Jour, Aust. Math, Soc. Ser. A, 43,21-35 (1997).
- 13. Yong, X. "Generalized convex duality for multi-objective fractional programs", Opsearch, 31, 2, 155-163 (2009).